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Abstract-We analyze the performance of various heuristic algorithms 
for minimizing realizations of multiple-valued functions by the newly 
developed CCD 191 and CMOS [W] programmable logic arrays. The 
functions realized by such PLA’s are in sum-of-products form, where 
sum is ordinary addition truncated to the highest logic value, and where 
product represents the MIN operation on functions of the input variables 
which are the interval literal operations. We compare three previously 
published heuristics, Pomper and Armstrong [14], Besslich [3], and Dueck 
and Miller [6], over sets of random and random symmetric functions. 
We show an exact minimization method that is a tree search using 
backtracking. A considerable reduction in the search space is achieved by 
considering constrained implicunt sets and by eliminating some implicants 
altogether. Even with this improvement, the time required for exact 
minimization is extremely high when compared to all three heuristics. 
We also examine the case where only prime implicunfs are considered and 
show that such implicants have marginal value compared to constrained 
implicant sets. Our basis of comparison is the average number of product 
terms. We show that the heuristic methods are reasonably close to 
minimal and produce nearly the same average number of product terms. 
Interestingly though, there is surprisingly little overlap in the set of 
functions where the best realization is achieved. Thus, there is a benefit 
to applying all three heuristics to a given function and then choosing the 
best realization. 

Index Terms- Absolute minimization, heuristic minimization, impli- 
cant, multiple-valued logic, prime implicant, programmable logic arrays, 
sum-of-products. 

I .  INTRODUCTION 
HE minimization of sum-of-products expressions in binary T logic has received considerable attention for over 30 years. 

The complexity of the problem has been known for almost as 
long. In 1965, Gimpel [7] showed that any instance of the set 
covering problem is an instance of sum-of-products extraction. 
In 1972, Karp [8] showed that the set covering problem is NP 
complete; thus, so also is sum-of-products extraction. The best 
known algorithm then requires exponential time. This is a real 
barrier; it precludes the exact minimization of functions with even 
a moderately low number of inputs, e.g., 20. As a result, consid- 
erable effort has been devoted to heuristic minimization methods. 
For example, among the Berkeley VLSI tools is ESPRESSO-IIC 
[4], a C program that minimizes binary functions by a set of 
operations on the prime implicants. 

Recently, there has been considerable interest in multiple- 
valued PLA’s [1]-[3], [5], [6], [9]-[12], [14]-[19]. Several have 
been proposed [12], [15], [17], [18] and at least one implemented 
[9]. We know of three heuristic multiple-valued sum-of-products 
minimization algorithms. All three use the direct cover method, 
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which proceeds in two steps: 1) select a minterm, and 2) select 
an implicant. Pomper and Armstrong [14] introduced in 1981 a 
direct cover method that finds a near-minimal sum-of-products 
expression by choosing a random minterm and an implicant 
covering that minterm which, when subtracted, drives the most 
number of minterms to 0. In 1986, Besslich [3] introduced 
another direct cover method that seeks to cover the “most 
isolated” minterms first. And in 1987, Dueck and Miller [6] 
introduced a method which also seeks the most isolated minterm 
first, but chooses a product term that tends to introduce the fewest 
discontinuities when subtracted from the function. 

There has been little study of the relative merits of available 
heuristic algorithms even in binary logic. To the credit of 
Brayton, Hachtel, McMullen, and Sangiovanni-Vincentelli [4], 
the realizations produced by ESPRESSO-IIC were compared to 
the realizations of MINI, PRESTO, and POP [4] over a set of 
56 specifically chosen binary functions. To our knowledge, there 
has been no comparative analysis of minimization algorithms for 
multiple-valued logic. The justification of the newly introduced 
heuristics examined by us has rested on an intuitive notion, 
supported by examples. In this paper, we analyze the following 
synthesis methods over sets of 7000 random and 7000 random 
symmetric 4-valued 2-variable functions. 

1) Random-mintermhandom-implicant 
2) Pomper and Armstrong [14] 
3) Besslich [3] 
4) Dueck and Miller [6] 
5) Gold 
6) Absolute minimization using prime implicants 
7) Absolute minimization using all implicants. 
Our results show the Besslich heuristic is slightly inferior 

to the Dueck and Miller heuristic while there is superi- 
ority of each over the Pomper and Armstrong heuristic. 
Our analysis is based on how well each heuristic min- 
imizes functions from a sample set of randomly chosen 
4-valued 2-variable functions. We impose a uniformly distributed 
probability distribution. Thus, we avoid the bias associated 
with a specifically chosen set. Since symmetric functions occur 
commonly in practice, we perform a similar analysis over a set 
of randomly chosen 4-valued 2-variable symmetric functions. 
Again, a uniform probability distribution is imposed. 

Our choice of 2-variable functions is influenced by a need to 
compare heuristics (1 -5) to minimal realizations (6-7). Even 
with only 2-inputs, it requires a day to compute minimal realiza- 
tions. Our choice of 4-values is influenced by the current interest 
in this radix. Also, since the PLA’s produced in CCD [9] and 
CMOS [15] use the truncated SUM on interval literals of the 
input variables, in our analysis we use these operations. We have 
adapted the three heuristic algorithms in [3], [6], [14] to this case. 
The heuristics in [6] and [14] were modified slightly to conform 
to our study. A motivation for the study reported here is the devel- 
opment of a minimization method for a CCD PLA CAD tool [lo]. 
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can be expressed as the SUM of 4 implicants, 

2ox: 3x3 

I 
2 2x$ 

\ 

Fig. 1. Example of a 5-valued 2-variable function. 

This paper is organized as follows. The next section introduces 
notation and fundamental concepts. Section I11 describes the 
seven synthesis methods, and Section IV describes the results of 
a comparative analysis of their performance. Section V describes 
the absolute minimization algorithm. In the final section, we 
summarize the results. 

11. BACKGROUND AND NOTATION 

Let X = {zl, x 2 , .  . . , zn} be a set of n variables, where x, 
takes on values from R = (0, l , . . . , ~  - 1). A function f ( X )  is 
a mapping f : R" + R U { T } ,  where r is the don't care 
value. Specifically, f ( X )  is said to be an r-valued n-variable 
function. Fig. 1 shows a map representation of a 5-valued 2- 
variable function. Blank entries correspond to 0. An assignment 
x of values to variables in X is called a minterm if f(z) # 0. In 
Fig. 1, there are 12 minterms all of which yield a 2. 

Functions realized by the CCD [9] and CMOS [ 111, [ 15 J PLA's 
are composed of three operations: 

2) SUM:  f(zl,z2) = z1+z2 
1) MIN : f(~1,zZ) = 5 1 ~ 2  (= MIN(zl,z2)), 

(= z1+z2 i f z l + z 2  5 T-1 
and = T - 1 otherwise), where x, is viewed as an integer 
and + is viewed as integer addition, and 

3) literal: f(xl)  = (= T - 1 if a 5 z1 5 band = 
0, otherwise). 

We use only 4-valued functions in this paper. Thus, r = 4. 
In binary, the SUM, MIN, and literal correspond to AND, OR, 
and x*, where z* E {z,Z, l}. In the realization of functions 
by a multiple-valued PLA, both constants and literals occur as 
operands of the MIN functions. A product term is the MIN of 
one nonzero constant and one or more literals. For example, 
f(q, z2) = 22zf 'xi is a product term that is 2 when x1 is 2, 3, 
or 4 and x2 is 1. An implicant of a function f(X) is a product 
term Z(X) such that f ( X )  2 I ( X )  where 2 means that for all 
assignments x of values to X ,  f(z) 2 I ( z ) .  Also, IZ(X))l denotes 
the nonzero constant associated with I (X) .  A prime implicant of 
f(X) is an implicant of f ( X )  such that there is no other implicant 
Z'(X) of f(X) where Z'(X) 2 Z(X). For example, 22x;'z: is an 
implicant of f(zl, z2), but it is not a prime implicant. However, 
2lzf lz; is a prime implicant. Any function can be expressed as 
the SUM of implicants [MI. For example, the function in Fig. 1 

We use the term sum-of-products to describe functions realized 
by such PLA's, where sum refers to SUM and product refers to 
MIN. A sum-of-products expression for function f(X) is minimal 
if there is no other expression for f(X) with fewer product terms. 
For example, (1) is a minimal sum-of-products expression. Given 
f(X), implicant I ( X )  covers a minterm at x if f(z) = I ( z ) .  
Therefore, g(X) = f(X) - I ( X )  has the property g(z) = 0, 
and we say that subtracting I ( X )  drives the minterm at x to 0. 

It is interesting to note that none of the implicants in (1) 
are prime. In fact, any sum-of-products expression for f(zl, z2) 
containing at least one prime implicant is not minimal. Such 
expressions require at least 5 product terms. Indeed, there is no 
sum-of-products expression for f ( X )  containing only its prime 
implicants. Therefore, in contrast to the case of conventional 
binary sum-of-products, it is not sufficient to consider just prime 
implicants [19]. A similar observation was made with respect to 
sum-of-products expressions, where sum is MAX and products 
are the MIN of unary functions of varying costs [13]. 

111. MINIMIZATION ALGORITHMS FOR SUM PLA's 
We consider seven synthesis methods. The first five are based 

on the direct cover approach. In this approach, a minterm is first 
chosen. Next, an implicant is chosen which covers this minterm. 
The implicant is then subtracted from the function and the process 
is repeated until there are no more minterms. 

A .  Random-MintermlRandom-Zmplicant 
In this method, both the minterm and the implicant are chosen 

randomly, with all choices being equally likely. That is, at each 
stage of the covering process, one minterm is chosen randomly 
from among all candidate minterms, and similarly in the case of 
implicants. As with the other algorithms, the chosen implicant 
is subtracted and the process repeated on the resulting function. 
Since no particular characteristics of the function are used to 
determine the choice of minterm or implicant, it provides a 
basis of comparison for the next four heuristics, which use 
characteristics of the functions to limit, in varying degrees, the 
choices of minterms and implicants. 

B. Pomper and Armstrong 

In our adaptation of this heuristic, the minterm is chosen 
randomly just as in the random-minterm/random-implicant case. 
However, the implicant is chosen as the one, which when 
subtracted, drives the largest number of minterms to 0 or don't 
care. If there is more than one such implicant, the largest is 
chosen. If there is more than one largest, the one generated 
first is chosen. The process is repeated until the function is 
completely covered. A formal description of this algorithm is 
given in Appendix I. 

The random nature of these two methods does not allow re- 
peatable results. Because the random-mintedrandom-implicant 
method can choose from all possible covers of any function, there 
is a nonzero probability that it will find a minimal realization. 
However, if minimal realizations are a small percentage of the 
total number of realizations, nonminimal realizations will most 
likely result. Our analysis shows this clearly. There is then 
the question of whether the Pomper and Armstrong heuristic 
has a nonzero probability of finding a minimal realization for 
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all functions. The example in Fig. 1 is a function where this 
probability is 0. Here, an implicant which when subtracted drives 
the most number of minterms to 0 is never in a minimal sum-of- 
products realization, and so, for this case, this heuristic cannot 
produce a minimal realization. 

C. Besslich 

Besslich [3] presents a direct cover approach for the heuristic 
minimization of multiple-valued logic functions using minterm 
weighting and implicant detecting transformations. In this heuris- 
tic, each minterm is assigned a weight that is a measure of 
the degree to which other minterms cluster around it. Minterms 
in the center of clusters have the highest weight and isolated 
minterms the lowest. The minterm with the smallest weight is 
chosen. Next, all implicants that cover the chosen minterm are 
generated. For each, an efficiency factor equal to the number 
of minterms it covers divided by its cost is calculated, and the 
minterm with the largest factor is chosen. In a PLA, all implicants 
are realized with the same cost (one column). Therefore, for 
this case, only the number of minterms driven to 0 or don’t 
care determines which implicant is chosen. The basic idea of the 
Besslich heuristic is to cover the most isolated minterms first and 
use implicants that have a low cost per minterm covered. Thus, 
the choice of implicants is made in the same way as in the Pomper 
and Armstrong heuristic. Besslich [3] does not mention how ties 
are broken. We choose to break ties among implicants having 
the same efficiency factor by using only the largest implicants, 
and among these by choosing the first one generated. A formal 
description of the heuristic is given in Appendix 11. 

D.  Dueck and Miller 

Dueck and Miller [6] present a heuristic similar to that of 
Besslich’s with the intent of improving realizations using the 
SUM operation. In this approach, an isolation factor (IF) is 
calculated for each minterm with the smallest value (that is, 
all 1 minterms are considered first; if there are none, then 2 
minterms are considered, etc.). The isolation factor of a minterm 
is inversely proportional to 1 plus the number of adjacent 
minterms plus the number of logic variables where there are 
a nonzero number of such minterms. Similar to the weight 
transform presented by Besslich, the isolation factor provides a 
measure of the degree to which a specific minterm can combine 
with other minterms in the function. The minterm with the highest 
isolation factor is chosen. All implicants that cover this minterm 
are then generated. For each, a measure called the relative 
break count (RBC) is calculated. This provides a measure of 
the degree to which the function is simplified if the implicant 
under consideration is chosen. The idea is to judiciously choose 
implicants that make the remaining function easy to realize. Our 
use of interval literals requires an adjustment to the Dueck and 
Miller algorithm. A formal description of this heuristic, modified 
to the specifications of our problem, is given in Appendix 111. 

E. Gold 

Gold is a heuristic in which the heuristic algorithms of Pomper 
and Armstrong, Besslich, and Dueck and Miller are applied and 
the best realization is chosen. It was inspired by the observation 
that these algorithms displayed a diversity in realizations. That 
is, no single algorithm is consistently better than the others over 
all functions; there are classes of functions where one heuristic 
does better than the others. 

TABLE I 
SUMMARY OF MINIMIZATION ALGORITHMS 

F. Absolute Minimization Using Prime Implicants 

This algorithm produces the smallest sum-of-products realiza- 
tion but with the restriction that only prime implicants of the 
current function are used at each stage in the covering process. 
Our intent was to compare this to the case of absolute minimiza- 
tion using all implicants. This algorithm requires considerable 
computer time. It is described in Section VI. 

G.  Absolute Minimization Using All Implicants 

An algorithm which produces the exact minimal sum-of- 
products was devised to compare to the results produced by 
the previous six algorithms. This does essentially an exhaustive 
search over all possible solutions, starting with the fewest num- 
ber of product terms. The algorithm also requires considerable 
computer time. A complete description of the algorithm is given 
in Section VI. 

H. Summary 

Table I summarizes the seven algorithms. 

IV. COMPARISON OF ALGORITHM PERFORMANCE 

For the purpose of comparison, we separate all 4-valued, 
2-variable functions into 17 disjoint classes according to the 
number of nonzero values in the function. For 14 of the 17 
classes, 500 random and 500 random symmetric functions are 
generated. For each function, the seven algorithms are applied 
and the number of product terms derived. For functions with less 
than three nonzero values, exact values for the average number 
of product terms can be calculated as follows. 

0 nonzero values: There is only one (trivial) function, constant 
zero, in this class. This function is symmetric, requires no 
implicants in its cover, and all algorithms produce identical 
results. 

1 nonzero value: There are 48 functions in this class of which 
12 are symmetric. All require one implicant. Thus, the average 
number of implicants required by all algorithms is 1. 

2 nonzero values: There are 3’. (T) = 1080 such functions of 
which only 72 are symmetric. All symmetric functions require 
two implicants and all algorithms find the minimal cover. Hence, 
the average for symmetric functions in this class is 2 for all 
algorithms. Of the 1080 functions in this class, 72 can be covered 
by one implicant. Only the random-mintewrandom-implicant 
algorithm fails to find the minimal cover for all functions in 
this class. Specifically, functions with adjacent identical minterms 
will be incorrectly minimized half the time, since a cover of a 
single minterm or two adjacent minterms are equally likely. Over 
the set of 1080 functions with 2 nonzero values, the average 
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Fig. 2. Patterns of symmetric functions with 3 nonzero values which could be covered with 2 product terms. 
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Avg. number of 
product terms 
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Fig. 3.  The average number of product terms versus the number of nonzero values for random functions. 

and standard deviation on the number of implicants produced by 
the random-minterdrandom-implicant algorithm are calculated 
as 1.97 and 0.18, respectively. On the other hand, these values for 
all other algorithms are calculated as 1.93 and 0.25, respectively. 
Our random function generation program was tested on this class 
and yielded values very close to these, to within 0.18% for the 
average and to within 3.9% for the standard deviation. 

For symmetric functions with 3 nonzero values, the exact value 
of the average number of product terms can be calculated as 
follows. 

3 nonzero values: There are 324 symmetric functions of which 
108 have all the nonzero values on the diagonal and therefore 
need 3 product terms. The remaining 216 functions have one 
nonzero value on the diagonal. These functions require either 2 
or 3 product terms. The functions that can be covered with 2 
product terms must have one of the six patterns shown in Fig. 2. 
Here x & y can be, respectively, 1 & 1, 2 & 2, 3 & 3, 1 & 2, or 
2 & 3. Thus, there are a total of 6 x 5 = 30 functions that can 
be covered with 2 product terms. The average and the standard 
deviation are therefore 2.907 and 0.294, respectively. Our random 
function generation program was tested on this class and yielded 
values within 0.35% for the average and to within 4.1% for the 
standard deviation. 

We were not able to obtain exact values for the remaining 
classes, and we investigated these using sample sets. For each 
class, 500 functions were randomly generated and all algorithms 
applied to each. The functions generated had no don’t care 
values. However, they could develop don’t care values during 
the covering process. (Nota bene: A value of 3 in the original 
function becomes a don’t care when fully covered. The covering 
process stops when only 0’s and don’t cares remain in the 
function.) Figs. 3 and 4 show the results. 

It can be seen that the relative performance of the various 
algorithms over the two sets of functions, random and random 
symmetric, is essentially the same. Thus, the following obser- 
vations apply to algorithm performance over both sets. The 
random-minterm/random-implicant algorithm does quite poorly. 
Choosing the implicant that drives the most minterms to 0, as 
in the Pomper and Armstrong algorithm, provides a significant 
improvement. There is little difference between the performance 
of the Besslich and Dueck and Miller algorithms; their curves 
in Figs. 3 and 4 are almost identical. Both heuristics choose the 
most isolated minterm first, and this gives some improvement 
over that of the Pomper and Armstrong algorithm. Gold, taking 
advantage of the small overlap between the three heuristic 
algorithms, provides some further improvement. Still further 
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Fig. 4. The average number of product terms versus the number of nonzero values for random symmetric functions. 
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Fig. 5. The number of functions where the absolute minimal realization is achieved versus the number of nonzero values for random functions. 

improvement is achieved by the algorithm that obtains the 
absolute minimum solution using only prime implicants. In fact, 
the difference between the absolute minimization algorithm using 
prime implicants and the same when using all implicants is hardly 
visible in Figs. 3 and 4, although the latter is better. 

Another measure of comparison of the algorithms is the 
number of functions for which the absolute minimal solution 
is found. Figs. 5 and 6 show how the seven algorithms compare 
on this basis. Here, there is a much larger distinction between 
the algorithms. As the number of nonzero values increases, the 
number of functions for which an optimum cover is found by the 
random-minterdrandom-implicant algorithm drops off sharply, 
to nearly zero. The Pomper and Armstrong algorithm offers 
considerable improvement, but, even in this case only about 39% 
(43%) of the functions (symmetric functions) are completely 
minimized when the number of nonzero values is 14-16. Be- 
tween the Besslich and the Dueck and Miller algorithms, the 
latter is slightly better. Approximately, 52% of the functions 
are minimized for these two algorithms when the number of 
nonzero values is 14-16. Gold shows a reasonable improvement, 

minimizing about 75% of the functions with 14-16 nonzero 
values. Considering only prime implicants yields the minimal 
solution for about 98% of the functions with 14-16 nonzero 
values. Again, the algorithms exhibit very similar behavior for 
both random and random symmetric functions. 

The programs for prime implicants only and absolute min- 
imization, and the random function generation routines were 
written in C. The heuristic algorithms were written in Pascal. The 
program was executed on a Hewlett-Packard Series 9000 Model 
350 workstation running HP-UX (HP’s extension of the UNIXTM 
operating system). The complete program took about one day 
to minimize 7000 randomly generated symmetric functions with 
3-16 nonzero values. Another run was made using different 
seeds for the random number generator streams. The results from 
both runs were very similar, indicating that a sufficiently large 
sample set size was used. 

All heuristics took approximately the same time to minimize 
both sets of 7000 functions. However, the heuristics were not 
optimized for fast execution; there was an overhead associated 
with generating the functions and logging results. Furthermore, 
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Fig. 6. The number of functions where the absolute minimal realization is achieved versus the number of nonzero values for random symmetric functions. 

the programs were run on a time-shared system with time varying 
load. Our experience, therefore, does not allow us to compare the 
heuristics on the basis of execution speed. In order to make such 
a comparison in a fair manner, each individual heuristic must 
be implemented as efficiently as possible. Also, functions with 
a larger number of inputs and implicants must be considered 
to reduce the effect of overhead. The tradeoff is that, for such 
functions, absolute minimization results may not be obtainable 
in reasonable time. 

V. ABSOLUTE MINIMIZATION 
The program to compute the absolute minimal realization of a 

function is a search over combinations of implicants. As observed 
in Section 11, it is not sufficient to consider just prime implicants. 
In the absence of any restricting conditions, we must consider all 
implicants. In the worst case for 4-valued 2-variable functions 
((f(sl,zz) = 3), this can be large, 300 implicants. Consider a 
function which has 100 implicants and requires 8 product terms 
in a minimal cover. Using a brute force enumeration technique, 
the proof that this is the minimum, requires that all combinations 
of seven or fewer implicants be examined. There are more than 17 
billion such combinations, and assuming that each combination 
can be generated and examined in 200 ps (a value that is better 
than in our program), it would take more than 944 hours, or 39 
days, to examine all the combinations for one function! Clearly 
this is not acceptable. 

However, one need not consider all implicants. Specifically, 
an implicant Z(X) of function f(X) can be discarded if it meets 
one of the following conditions: 

1) I(z) # 0 + f(z) = T for all assignments x of values to 
X, i.e., whenever the implicant is nonzero, the function is 
don’t care. 

2) II(X)l = T - 1 and Z(X) is not a prime implicant. 
3) II(X)l # T - 1 and there exists another implicant J(X) of 

f ( X )  such that IJ(X)l = T - 1 and I ( X )  < J ( X ) ,  where 
I ( X )  < J ( X )  means that for all assignments x of values 

Even with this, the search space can be prohibitively large. Using 
the lemma given below, however, it can be significantly reduced. 

t o x ,  I ( z )  < J(z). 

Definition: U(x) is a constrained implicant set of minterm x 
for function f(X), if U ( z )  = U1(2),o I ( X ) ,  where Z(X) is an 
implicant of f( X ) .  

Lemma 1: If U(x) is a constrained implicant set of minterm x 
for function f ( X ) ,  then every minimal sum-of-products expres- 
sion of f(X) where sum is SUM contains at least one implicant 
from U@). 

Corollary: If there are k constrained implicant sets for a func- 
tion f ( X )  each disjoint with all of the other IC - 1 constrained 
implicant sets, then no minimal sum-of-products expression of 
f(X) has fewer than k implicants. 

The proof follows from the fact that at least one implicant is 
needed from each of the k disjoint sets. 

Definition: U(x) is a minimal constrained implicant set of a 
function if and only if 0 < IU(z)l 5 IU(y)I for all y E X ,  
where U(x) is a constrained implicant set. 

A minimal constrained implicant set is useful in an efficient 
search for the absolute minimal sum-of-products expression for 
a function. The search space can be represented by a tree where 
each node corresponds to a function, and each edge to an 
implicant. The root node represents the input function, and all 
other nodes represent functions obtained by subtracting from the 
input function, the implicants in the path (from this node) to the 
root. If a function has a implicants, the root has a descendents. 
Furthermore, each of these has at most (and probably less than) 
a - 1 descendents. However, rather than consider all implicants 
at the root node, it is sufficient to consider only implicants from 
a minimal constrained implicant set, considerably reducing the 
search space. From Lemma 1, at least one implicant from this set 
must be in a minimal sum-of-products expression. For example, 
the average number of implicants for a 4-valued 2-variable 
function with one zero, (obtained from a randomly generated 
sample set of 500 functions) is 111.2, while the average size 
of the minimal constrained implicant set is only 6.95. This is a 
considerable reduction. It is also a needed reduction; without it, 
the computation of the absolute minimum algorithm would not be 
practical. Interestingly, the average number of prime implicants 
for the above set is 10.11. 

The algorithm recursively finds the absolute minimal cover of 
the function at each node. Let r(f) denote the minimum number 
of implicants needed in the minimal sum-of-products expression 
of function f ( X ) .  Let U ( z )  = {Il(X), I z ( X ) ,  + .  , I k ( X ) }  be 
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any constrained implicant set of f(X). Let g i ( X )  = f(X) - 
I ,  ( X )  be the function obtained by subtracting I, ( X )  from f(X). 
From the definition of a constrained implicant set, it follows that 

An outline of the algorithm that finds the minimal sum-of- 
r(f) = 1 + min {F(91), F(92),. . ., F ( 9 k ) ) .  

products expression of a function is as follows. 
Absolute Minimization Algorithm 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
algorithm absolute-minimization; 

f t input-function; 
cur-best-soln-set +-best solution from the Pomper and Arm- 

strong, Besslich, and Dueck and Miller 
heuristics; 

cur-best-soln-size t number of implicants in best solution; 
cur-partial-soln-set t 0 
cur-partial-soh-size t 0 
minimize(f) 
stop 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

procedure minimize (f); 

U t some essential implicant set off ;  

while ((there exists another implicant in U )  and 
[[advance]] 

(curqartial-soln-size + 1 < cur-best-soln-size)) do 

I t the next implicant in U ;  
cur-partial-soh-set t cur-partial-soh-set U { I } ;  
cur-partial-soln-size +- cur-partial-soln-size + 1 
if (for all assignments x of values to X, f(x) = 0 or 

begin 

f@) = r) 
then 

begin 
cur-best-soln-set t cur-partial-soln-set; 
cur-best-soln-size t cur-partial-soln-size 

end; 
[[backtrack]] 

else if (cur-partial-soln-size + 1 
< cur-best-soh-size) then 
begin 

end 
minimize (f - I ) ;  

cur-partial-soh-size + cur-partial-soln-size - 1; 
cur-partial-soln-set + cur-partial-soln-set - { I }  

end; 
return 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/ *  
The subtraction of an implicant I from a function f, as described 
by g + f - I ,  takes into account the value of the input-function. 
Let x be an assignment of values to variables X. Then, g t f - I 
means 

for (all assignments x of values to X )  do 
begin 

if ((f(x) = r )  or (input-function (x) = r )  or 
(f(x) s I(x) and input-function (x) = r - 1)) 

then g(x) t r 
else g (x) t g (x) - I(x) 

end 
*/. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The speed of the absolute minimization algorithm depends 
on the s u e  of the constrained implicant set. Thus, the smallest 
constrained implicant set is desired. However, the time spent 
searching for the smallest set may be considerable. We choose 
instead to adopt the following strategy. Choose the present 
constrained implicant set if its size is less than or equal to 
some threshold T. Otherwise, examine all constrained implicant 
sets and choose the smallest. By the choice of T, we control 
the type of behavior at each node; with a sufficiently large 
value, the first constrained implicant set is always chosen and 
with a sufficiently small value, all constrained implicant sets 
are searched and the smallest chosen. Although reducing the 
value of T reduces the total number of implicants scanned, 
the extra time required at each node may increase the overall 
program execution time. We tried two values of T, 6 and 
9, and found that the former resulted in a somewhat faster 
program. 

The algorithm for finding the minimal sum-of-products expres- 
sion using only prime implicants is a modification of the above. 
When a cover is found for the input function, a check is made 
to see if it is a valid solution using only prime implicants. This 
is done as follows. 

1) g + f (the input function). 
2) If there are no implicants in the solution set of g that are 

prime with respect to g, stop-this is not a valid solution. 
Otherwise, remove them from the solution set, subtract 
them from g,  and replace g with the result. 

3) If there are no more implicants in the solution set, 
stop-this is a valid solution. Otherwise, go to step 2. 

If the cover is valid, the current best solution set and size are 
updated, and the algorithm proceeds to look for an improvement 
over this, as in the previous case. On the other hand, if the 
cover is not valid, the search continues for a valid cover, as 
in the previous case. It is interesting that with this algorithm, 
absolute minimization using only prime implicants is actually 
sZower than when all implicants are used. This is because 
of the additional time spent at each node to verify that the 
solution consists of prime implicants only. An alternative is to 
choose from the set of implicants that are prime with respect 
to the given function. We proceed as follows, select a prime 
implicant I , ( X )  of f ( X ) ,  subtract I , ( X )  from f ( X ) ,  select 
a prime implicant of f ( X )  - Il(X), subtract I z ( X )  from 
f ( X )  - Il(X), etc. The process is the same as in the case of 
a solution over all implicants involving an exhaustive search 
except that the choices Il(X), 1 2 ( X ) ,  . . . are made from 
all prime implicants. In the latter case, we are guaranteed 
by Lemma 1 that at least one implicant from any constrained 
implicant set is part of the minimal sum-of-products expression. 
However, this is not the case when the constrained implicant 
set contains only implicants that are prime with respect to the 
present function. Suppose, in Fig. 7, we choose the minterm at 
x1 = x2 = 1. The constrained implicant set for this minterm 
consists of only one prime implicant l ' x ~ o x ~ .  This leads to 
the sum-of-products expression llx:oxi + loxYox: + 1 2 x ~ o x ~ ,  
the second two implicants being prime with respect to the 
function obtained by the subtraction of l ' ~ : ~ z ~ .  However, this 
is not a minimal solution. That status is held by 1°x20x: + 
1'x:'x;. Therefore, we cannot take advantage of the reduc- 
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\*' 
\ APPENDIX I 

POMPER AND ARMSTRONG [14] 
HEURISTIC USING INTERVAL LITERALS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* 
input-function is the given r-valued n-variable function. f is an 
intermediate function as it is covered in successive stages of 
the algorithm. Each minterm in f can have a value in the range 
[ O f  . .r] where r is the radix. A value of- 

Fig. 7. A 2-variable 4-valued function which requires the use of nonprime 
implicants to produce a minimal expression. 

tion in search offered by the constrained implicant set when 
only prime implicants are used. Our experience indicates that 
there is a larger reduction in search time when the search is 
restricted by constrained implicant sets than by prime impli- 
cants. Furthermore, the former guarantees minimality while the 
latter does not. In the absence of another method to reduce 
the search, we are faced with the surprising conclusion that 
prime implicants have less value than constrained implicant 
sets. 

0 + this minterm was zero in input-function or was in the 
range [l . . . ( r  - 2)] in input-function, but has now been 
fully covered. 

1 . . . ( r  - 1) j this minterm still needs to be covered to the 
extent specified by the value 

r 3 {this denotes a don't care} this minterm was r in 
input-function or was (r - 1) in input-function, but has 
now been fully covered. 

An implicant can be written as I = p xi1 .'* xp . . . xAn. By the 
size of this implicant, we mean the number of locations where 
this implicant is p ,  which is the range [l . . . ( r  - l)]. That is, 
the size-of-implicant-Z is 

Three heuristic sum-of-products minimization algorithms [3], 
[6], [14] have been compared on the basis of two sets, 7000 
random and 7000 random symmetric 4-valued 2-variable func- 
tions. The results from both sets are similar. They show that 
two heuristics, 1) Dueck and Miller, and 2) Besslich, perform 
about the same, each slightly better than the 3) Pomper and 
Armstrong heuristics. All three heuristics perform much better 
than a heuristic that chooses a solution randomly. Gold, an 
algorithm that chooses the best of the three heuristics, does 
reasonably better than any particular one. Our results indicate 
that, on the average, heuristics perform quite close to optimum. 
Because of the restriction to two variable functions, we were 
able to derive the absolute minimal expression for all 7000 
functions over each of two sets -random and random symmetric 
functions. A study of functions with more variables would 
have precluded this information. The extension of this study 
to more variables will require either faster computation of 
the minimal sum-of-products expression or the elimination of 
this information. Excluding functions where the minimal sum- 
of-products expression computation is intractable will leave 
functions, like those with few minterms, where heuristics do 
reasonably well. 

In the process of deriving a tractable absolute minimization 
algorithm, we made a surprising discovery. Prime implicants 
have little value in the search for minimal sum-of-products 
expressions for multiple-valued logic functions where sum is 
truncated sum. Restricting the search to prime implicants can 
eliminate minimal solutions. Although such functions are rare, 
the surprise comes from the fact that for the sets of functions 
we examined, the use of constrained implicant sets restricts 
the search more than prime implicants without compromising 
minimality . 

While the motivation for the study was to compare certain 
heuristic minimization techniques, we devoted most of the ef- 
fort to the development of a tractable absolute minimization 
algorithm. Thus, what began as an investigation of heuristic 
methods ended as an investigation of methods to reduce the 
search required by absolute minimization. 

l s m s n  

An implicant J is larger than another implicant Z if the size of J 
is larger than the size of Z. 
*I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

algorithm pomper-and-armstrong; 
f t input-function; 
cur-partial-soln-set t 0; 
while (there exists a minterm in the range [l . . . ( r  - l ) ] )  do 

begin 
cy +- a minterm in the range [l . . . ( r  - l)]; 
Z t maximal-implicant(a); 
cur-partial-soh-set t cur-partial-soh-set U {I}; 
f - f - I  

end; 
stop 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

function maximal-implicant( a); 

cur-size t - 00; 

cur-terms-covered t - 00; 

for (each implicant Z o f f  such that I ( a )  2 f (a))  do 
begin 

Z terms-covered t the number of minterms in f that 
would be driven to 0 or r (don't care) 
if Z is subtracted from f; 

I-size t size-of-implicant-l; 
if (Z-terms-covered > cur-terms-covered) or 

((Z-terms-covered = cur-terms-covered) and 
(Z-size > cur-size)) then 

maximal-implicant(a) + I; 
cur-size + I-size; 

begin 
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cur-terms-covered + I-terms-covered 
end; 

end; 
return 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/ *  
The subtraction of an implicant Z from a function f, as de- 
scribed by f + f - I ,  takes into account the value of the 
input-function. Let x be an assignment of values to variables X .  
Then, f + f - I means 

for (all assignments x of values to X )  do 
begin 

if (( f (z) = r )  or (input-function(x) = r) or 
(f(x) s I(x) and input-function(x) 
= I - 1 )  

then f(x) + r 
else f(x) t f(x) - I@) 

end 
*/. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

APPENDIX I1 

if (wt(P) e cur-lowest-wt) then 
begin 

a + 0; 
cur-lowest-wt t wt(P) 

end; 
end; 

return 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

function w(p,  7 ) ;  

/*  

P = P I P z * * * P ~ - I P ~  and Y = Y I Y ~ ’ * * Y ~ - I Y ~ .  
*I 

Let the assignment x of values to the variables zl, z2, .. ., zn serve 
as an index to the value of input-function(x). Specifically, let 

BESSLICH [3] HEURISTIC USING INTERVAL LITERALS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

return. 
algorithm besslich; 
/*The definitions of Appendix I apply to the following.*/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

f t input-function; 
cur-partial-soln-set t 0; 
while (f has minterms in the range [l . . ( r  - l)]) do 

begin 
a t besslich-most-isolated-minterm( f); 
I t maximal-implicant(a); 
cur-partial-soh-set + cur-partial-soh-set U { I } ;  
f t f - 1  

end; 
stop 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

function besslich-most-isolated-minterm( f ); 

/ *  
Code the function by mapping all the 0’s to -1; all the don’t care 
values (r’s) to 0; and all other values (1 through r - 1) to 1. Let 
coded -f be this coded form. Compute the weight transform [3] 
of coded -f and compute the most isolated minterm as follows: 
*I 

APPENDIX 111 
DUECK AND MILLER [6] HEURISTIC USING INTERVAL LITERALS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

algorithm dueck-and-miller; 
/*The definitions of Appendix I apply to the following.*/ 

f + input-function; 
cur-partial-soln-set + 0; 
while (f has minterms in the range [ 1 . . . ( r  - l)]) do 

a + dueck/miller-most-isolated-minterm( f); 
Z t best-implicant(a); 
cur-partial-soln-set + cur- partial soln-set U I ;  
f - f - I ;  

begin 

end 
stop 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

cur-lowest-wt t 00; 

a + 00 ... 00; 
for each minterm p in coded -f such that coded -f (p) = 1 do 

begin 

function dueck/miller-most-isolated-minterm( f); 

/*  
Let min-Val be the minimum value of all minterms in f that are 
in the range 1..  . (T- - l), i.e., neither 0 nor don’t care. For each 
minterm a in the function with value equal to min-Val, compute 

/*  compute the weight of this minterm with all other 
minterms and add */ 
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the clustering factor (CF) as follows begin 

C F ( a )  = DEA,(T - 1) + EAn 

where EA, is the number of minterms adjacent to a with which 
a can be combined in an interval literal and DEA, is the number 
of variables (directions) in which a can be combined with a 
nonzero number of minterms. 

Dueck and Miller define the isolation factor IF as the reciprocal 
of 1 + the clustering factor above and choose the minterm with 
the highest IF. The same result can be obtained by choosing the 
minterm with the smallest CF, avoiding the division. Ties are 
broken by selecting the first generated. Let a be the minterm 
thus chosen. 
*I 
a = 00 . .  .oo; 
CF,i, +- 00; 

for min-Val = 1 to r - 1 do 
if CFmin = +00 do 
begin 

while (there is a minterm such that 
f (0) = min -Val) do 

begin 
CF(P)  = DEAp + EAp; 
if CF,;, > CF(P)  then 

begin 
CFmn t CF(P);  

end; 
end; 

end; 
end; 

stop 

if - I ( a ) )  or 
(the minterm immediately following a 

in variable i (if such a 0 exists) is not in 
I and is such that f(P) = f(a) - I ( a )  

or 
(the minterm P immediately preceding a 

in variable i (if such P exists) is not in I 
and is such that f(P) = f (a )  - I ( a ) ) )  

then 

rbc(1) t rbc(1) - 1; 

if ((the minterm P immediately preceding 
a in variable i (if such P exists) is not in 
I and is such that f(P) = f(a)) or 

(the minterm P immediately following a 
in variable i (if such P exists) is not in 
I and is such that f(P) = f (a ) ) )  then 

rbc(1) t rbc(1) + 1; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

function best-implicant(a); 

cur-rbc +- 00; 

for (every implicant I in f that covers a)  do 
begin 

if (rbc(Z) c cur-rbc) then 
begin 

best-implicant(a) t I ;  
cur-rbc t rbc(Z); 

end; 
end; 

return 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

function rbc(Z); 

I* 
The calculation of rbc shown here is different from that in [6] 
to accommodate the interval literal. Some minor variations were 
tried, but the average case results were nearly identical. Of these, 
the one that appeared to be the best was chosen. 

rbc(Z) t 0; 
for (each a in I such that f (a )  # T )  do 

begin 
for (each variable i = 1 to n) do 

*I 

end; 
end; 

return. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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